
PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

Adversarial vulnerabilities of human decision-making
Amir Dezfoulia,1, Richard Nocka,b, and Peter Dayanc,d

aData61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Eveleigh, NSW 2015, Australia; bAustralian National University, Canberra,
ACT 0200, Australia; cMax Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; and dUniversity of Tübingen, 72074 Tübingen, Germany

Edited by James L. McClelland, Stanford University, Stanford, CA, and approved October 3, 2020 (received for review August 10, 2020)

Adversarial examples are carefully crafted input patterns that
are surprisingly poorly classified by artificial and/or natural neu-
ral networks. Here we examine adversarial vulnerabilities in
the processes responsible for learning and choice in humans.
Building upon recent recurrent neural network models of choice
processes, we propose a general framework for generating adver-
sarial opponents that can shape the choices of individuals in
particular decision-making tasks toward the behavioral patterns
desired by the adversary. We show the efficacy of the framework
through three experiments involving action selection, response
inhibition, and social decision-making. We further investigate the
strategy used by the adversary in order to gain insights into the
vulnerabilities of human choice. The framework may find appli-
cations across behavioral sciences in helping detect and avoid
flawed choice.

decision-making | recurrent neural networks | reinforcement learning

Advertisers, confidence tricksters, politicians, and rogues of
all varieties have long sought to manipulate our decision-

making in their favor, against our own best interests. Doing this
efficiently requires a characterization of the processes of human
choice that makes good predictions across a wide range of poten-
tially unusual inputs. It therefore constitutes an excellent test of
our models of choice (1). We have recently shown that recur-
rent neural network (RNN) models provide accurate, flexible,
and informative treatments of human decision-making (2–4).
However, how well these RNNs can interpolate and extrapolate
outside the range of conventional inputs, and then the insights
they can offer into human choice frailty, are unclear. To examine
these issues, we require a systematic way of 1) finding the vulner-
abilities in models of choice and 2) proving that, and how, these
vulnerabilities are also exhibited by humans. Here, we provide a
general framework for doing this (Fig. 1) based on RNNs fitted
to behavioral data.

One line of systematic study of vulnerabilities started in image
classification, with seminal early observations from Szegedy et
al. (5) that deep artificial neural networks are brittle to adver-
sarial change in inputs that would otherwise be impercepti-
ble to the human eye. This computer vision weakness of the
machine has been an angle of attack to design adversaries for
reinforcement-learning (RL) agents (6), followed by general for-
mal insights on adversarial reinforcement learning on the more
classical bandit settings (7). To analyze human choice frailty,
our framework involves two steps, the key one also involving a
machine-vs.-machine adversarial step in which a (deep) RL agent
is trained to be an adversary to an RNN; this latter model is
trained in a previous step to emulate human decisions follow-
ing refs. 2–4. This provides the general blueprint to tackling
the first question. To show the promise of this framework to
surface such vulnerabilities in human subjects, we applied it to
three decision-making tasks involving choice engineering (1),
response inhibition (8), and a social exchange game (9) and
tested the resulting adversaries on volunteers to assess the biases.
We show that in all of the tasks the framework was able auto-
matically to specify adversarial inputs which were effective in
steering choice processes to favor particular target actions or
goals. We further use simulations to illustrate and interpret the
strategies used by the adversaries. Note that although we refer

throughout to “adversaries,” exactly the same framework can be
used for cooperative ends, or to increase social welfare. Indeed,
to show this, we create an adversary in the social exchange
game whose intent is to enforce a fair outcome, rather than an
unfair one.

The Adversarial Framework
The interaction of the subjects with the task is shown in Fig. 1A.
On each trial t , the subject (n) receives what we call the learner
reward (rnt−1), which is delivered on the basis of their previ-
ous action (an

t−1) and is provided with the current observation
(on

t ; e.g., cues on a computer screen). They then take the next
action, an

t . The process then repeats with the subjects receiv-
ing the learner reward of the action chosen (rnt) and the next
observation (i.e., on

t+1).
In the nonadversarial case, learner rewards and observations

are typically generated by a particular, predefined Markov or
partially observed Markov decision process. For instance, actions
might lead to learner rewards with certain fixed or roving prob-
abilities. By contrast, in our case, an adversarial model operates
behind the scenes, deciding the learner reward for each action
and the next observation that will be shown to the subject. To
avoid triviality, adversaries work within budget constraints, which
might limit or equalize per action the total number of learner
rewards that the adversary could deliver. Within such constraints,
the adversary faces a sequential decision-making problem to pick
the learner rewards and observations that will shape subjects’
behaviors over the long run according to the target pattern or
goal, expressed either in terms of actions (e.g., getting them
to prefer a particular action) or goals (e.g., maximizing the
adversary’s return in a game-theoretic context).

Significance

“What I cannot efficiently break, I cannot understand.” Under-
standing the vulnerabilities of human choice processes allows
us to detect and potentially avoid adversarial attacks. We
develop a general framework for creating adversaries for
human decision-making. The framework is based on recent
developments in deep reinforcement learning models and
recurrent neural networks and can in principle be applied to
any decision-making task and adversarial objective. We show
the performance of the framework in three tasks involving
choice, response inhibition, and social decision-making. In all
of the cases the framework was successful in its adversarial
attack. Furthermore, we show various ways to interpret the
models to provide insights into the exploitability of human
choice.

Author contributions: A.D., R.N., and P.D. designed research; A.D. and P.D. performed
research; A.D. analyzed data; and A.D., R.N., and P.D. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 To whom correspondence may be addressed. Email: amir.dezfouli@data61.csiro.au.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2016921117/-/DCSupplemental.y

First published November 4, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.2016921117 PNAS | November 17, 2020 | vol. 117 | no. 46 | 29221–29228

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 8
7.

17
4.

95
.2

9
on

 J
an

ua
ry

 2
1,

 2
02

5
fr

om
 I

P
ad

dr
es

s
87

.1
74

.9
5.

29
.

http://orcid.org/0000-0003-3476-1839
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:amir.dezfouli@data61.csiro.au
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016921117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016921117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2016921117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2016921117&domain=pdf

A B

C

D

Fig. 1. The framework. (A) The interaction of the subjects with the task.
At each trial t, subject n receives the learner reward (rn

t−1) for its previ-
ous action and a new observation (on

t) from the environment and takes
action an

t . The environment then sends a new learner reward and obser-
vation back to the subject. This cycle continues until the end of the task.
(B) The behavior of the subjects is modeled by an RNN (parameters Θ). The
inputs to the RNN are the previous action (an

t−1), learner reward (rn
t−1), and

the current observations from the task (on
t) along with the previous inter-

nal state of the RNN (xn
t−1). After receiving the inputs, the RNN updates its

internal state, which is then mapped to a softmax layer to predict the next
action πn

t (.). These predictions are then compared with the actual actions
taken by the subjects to build loss function L(Θ), which is used for training
the model. The trained model is called the learner model. (C) The adversary
is an RL agent which is trained to control the learner model. We consider
closed- and open-loop adversaries. For the former, the internal state of the
learner model (i.e., xm

t for simulation m), which summarizes its learning his-
tory, is used as the state of the adversary. The adversary then determines
the learner reward and the next observation to be delivered to the learner
model. The learner model subsequently takes its next actions and this cycle
continues. The adversarial reward (Reward), which is used to train the adver-
sary, depends on the alignment between the action taken by the learner
model (am

t) and the adversary’s objectives. By contrast, an open-loop adver-
sary does not have access to the internal state of the learner model and
generates rewards and observations without reference to them (not shown
in the figure), only to the adversarial rewards, which do depend on them.
In the open-loop case, the adversarial choices specify rewards and obser-
vations for all possible actions of the learner model (or the subject). Thus,
action am

t is not passed to the adversary, but is passed to the task to calcu-
late the reward that should be delivered to the learner based on the reward
that the adversary has assigned to each action. (D) Using the trained adver-
sary and the learner model for generating (here, closed-loop) adversarial
interactions with humans. Human subject n receives the learner reward for
their actions and the observations from the trained adversary. They subse-
quently take an action (an

t) which is received by the learner model to update
its internal state xn

t . This state is then sent to the adversary to determine the
learner reward for the action and the next observation. This cycle continues
until the end of the task.

We modeled the adversary using an RL agent. On each trial,
the adversary receives the learning history of the subject as input
and produces as output the learner reward and the next obser-
vation to be delivered to the subject. In RL terms, the learning
history of the subjects constitutes the state of the adversary,
and its output are the adversarial choices∗ , which determine
the learner reward and the observation inputs for the subjects.
The immediate reward provided to the adversary to criticize its
adversarial choices (we call this the adversarial reward) reflects
whether its output made the subjects meet the target behavior
or goals. Within this structure, the adversary is trained to earn
the maximum-sum adversarial reward over the whole task, cor-
responding to producing outputs which most effectively push the
subjects toward target actions or goals.

In principle, the adversary could be trained through direct
interactions with humans. In practice, however, this approach is
unfeasible given the delays involved with interacting with humans
and the large number of training samples required. Instead, we
use an alternative, model-based approach based on recent RNN
models of human choice processes (2–4). Here, an RNN, called
the learner model is trained from data collected from humans
playing the task nonadversarially and is then used to predict
human behavior under the different inputs that the adversary
might try. RNNs are suitable because they provide a flexible dif-
ferentiable family of models which are able to capture human
choice processes in detail. Our approach has two additional
advantages over training the adversary against humans. First,
it can be carried out in settings where substantial training data
(nonadversarial) already exist; second, our approach comes at
the reduced human cost of just modeling the human behavior
for the nonadversarial task. Provided the effect of covariate shift
is not too severe, this can then be used as input for diverse
adversarial training scenarios.

Learner Model. In detail, the learner model (Fig. 1B; determined
by parameters Θ) comprises an RNN and a softmax layer which
maps the RNN internal state to a probability of selecting each
action (4). On trial t for subject n , the RNN layer has an internal
state denoted by vector xn

t−1, which reflects the RNN’s inputs on
trials 1 . . . t − 2. This state is recurrently updated based on the
previous action (an

t−1) and learner reward (rnt−1) and the current
observations (on

t). The output of the RNN layer xn
t is passed to

a softmax layer to predict the next action (i.e., πt(·)). The predic-
tion is compared with the subject’s actual action an

t , resulting in
loss L(Θ) that is used for training the network. See Materials and
Methods for more details.

Training the Adversary. The adversary is modeled as an agent
whose adversarial choices are learner rewards and observations
on each trial, emitted with the goal of optimizing target behav-
iors subject to constraints. Since the adversarial choice on one
trial can affect all of the subsequent actions of the learner model
(hopefully characterizing similar dependence in the subjects),
the adversary faces a sequential decision-making problem, which
we address in an RL framework (Fig. 1C).

The future actions of the learner model after trial t depend
on its prior history only through its internal state xm

t (for sim-
ulated learner m). Therefore, the RL adversary uses xm

t as the
state of the environment to decide the learner reward rmt and
next observation om

t+1 that it provides to the learner model. The
process repeats with the new state of the learner model (xm

t+1)
being passed to the adversary. Within this structure, the policy
of the adversary in choosing learner rewards and observations is
trained to yield maximum cumulative adversarial reward subject

*For clarity, we refer throughout to decisions in the task as actions and the output of
the adversary as adversarial choices.

29222 | www.pnas.org/cgi/doi/10.1073/pnas.2016921117 Dezfouli et al.

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 8
7.

17
4.

95
.2

9
on

 J
an

ua
ry

 2
1,

 2
02

5
fr

om
 I

P
ad

dr
es

s
87

.1
74

.9
5.

29
.

https://www.pnas.org/cgi/doi/10.1073/pnas.2016921117

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

to constraints. We used the advantage actor–critic method (A2C)
(10) and deep Q-learning (DQN) (11) for training the adversary.
Note that the learner model is not trained in this stage and its
weights are frozen. See Materials and Methods for more details
on training and the constraints.

Along with this closed-loop adversary, which is guided by the
past actions of the subject (via the internal state of the learner
model), we also consider an open-loop adversary. This chooses
learner rewards and observations without receiving the subject’s
actions or the internal state of the learner model. Its policy is
trained directly just using samples generated from the learner
model.

Using the Adversary. Fig. 1D depicts how the trained closed-loop
adversary and the learner model are used in an experiment
involving human subjects. The learner model does not choose
actions but receives the actions made by subject n as input and
tracks their learning history using xn

t . In turn, on trial t , xn
t is

received by the adversary to determine the learner reward rnt and
the next observation on

t+1 which the subject will use to choose
their next action an

t+1. The same input, along with the actual
action and learner reward, is delivered to the learner model. This
cycle continues until the end of the task.

Results
Bandit Task. This experiment is based on the adversarial bandit
task introduced in ref. 1. On each trial, subjects make choices
between two squares, one on the left of the screen and the
other on the right. After each choice, the subjects receive feed-
back about whether (smiley face) or not (sad face) their action
earned a learner reward. A priori, before each choice, the adver-
sary assigns a potential learner reward to both potential actions
(e.g., that the left action will be rewarded and the right action
will not get rewarded), and this is faithfully delivered ex post
based on the subject’s choice. The goal of the adversary is to
assign learner rewards to the actions in a way that makes sub-
jects prefer one of the actions (called the “target” action) over
the other one (the “nontarget” action). The target action is pre-
determined (e.g., before the experiment starts the left action is
set as the target action). The adversary is required to achieve
this goal under a constraint: It must assign exactly 25 a priori
learner rewards to each action, that is, it cannot simply always
assign learner rewards to the target action and no learner reward
to the nontarget action.
Q-Learning Model. We first evaluated the framework in the
synthetic setting of Q-learning. We generated data from a
Q-learning algorithm (1,000 learners) with the same parame-
ters used in ref. 1 and used these data to train the learner
model. Then we used RL to train the adversary to exploit the
learner model. The adversary received an adversarial reward
every time the learner model chose the target action. The con-
straint was enforced at the task level, that is, after the adver-
sary has allocated 25 learner rewards to an action, no more
learner rewards will be allocated to that action. Conversely, if
the adversary has only assigned 25− k learner rewards to an
action by trial T − k (for k > 0, where T is the maximum trial
number), that action will be assigned a learner reward on the
remaining k trials.

The trained adversary was evaluated against both the learner
model and the Q-learning model. The main dependent variable
is the “bias,” which is the percentage of trials on which the target
action was chosen (Fig. 2A). As the figure shows, the adversary
was able to guide the choices toward the target action. The aver-
age bias in playing the Q-learning model was 73.4% (ADV vs.
QL column). This is similar to the results obtained in ref. 1, but
here the results are obtained without knowing that the underly-
ing algorithm is Q-learning. The average bias when the adversary
was simulated against the learner model is 73.8% (ADV vs. LRN

A B

Fig. 2. The performance of the adversary (ADV) in the bandit experi-
ment against various opponents. “Bias” is the percentage of target actions
selected by the opponent in response to learner rewards assigned by the
adversary; error bars represent 1 SEM. Each black dot (jittered for display)
represents one simulation. (A) ADV against an actual Q-learner (QL, red) or
the learner model trained on Q-learners (LRN, blue). (B) ADV against human
subjects (SBJ, red) or the learner model trained on other human subjects
from ref. 1 (LRN, blue). Horizontal dashed lines represent equal selection of
actions.

column), which is comparable with the results against the actual
Q-learner.

Next, we sought to uncover the strategy used by the adver-
sary. Two 100-trial simulations are shown in Fig. 3A (ADV vs.
Q-learning). The blue and red circles indicate that the learner
model selected the target and nontarget action respectively. The
vertical blue and red lines indicate that a learner reward was
assigned to the target and nontarget actions respectively. No line
indicates that the learner reward was not assigned to the corre-
sponding action. The green shaded area shows the probability
the learner model awards to the target action. The general tactic
used by the adversary is to assign a few learner rewards to the tar-
get action in the first half of the task; these few learner rewards,
however, were sufficient to keep the probability of choosing
the target action around 70 to 80% (shown by the green area),
which is because the adversary never delivered nontarget learner
rewards in this period. Toward the end of the task, the adversary
“burns” the nontarget learner rewards whenever the probability
of the target action is above chance; at the same time the den-
sity of target learner rewards is increased to cancel the effect of
nontarget learner rewards. The combination of these strategies
made the learner model choose the target action around 73% of
the trials.
Human Subjects. We next applied the framework to develop an
adversary for human choices in the task. The learner model was
trained using the (nonadversarial) data published in ref. 1 for
N = 484 subjects.

The trained adversary and the learner model were used to col-
lect data from humans using Amazon Mechanical Turk (N =
157). The results are shown in Fig. 2B. The bar “ADV vs SBJ”
shows the bias of subjects when playing against the adversary.
The average bias was 70%, which is significantly higher than the
equal selection of actions that might naively be implied by the
equal numbers of learner rewards available for each choice (50%
bias baseline; Wilcoxon signed-rank test, P < 0.001). This shows
that the adversary was successful in leading subjects to choose
the target action. The Fig. 2B bar “ADV vs LRN” shows the bias
when the adversary is playing against the learner model (sim-
ulated). The average bias is 76.4%, which is better than when
the adversary is pitted against human subjects. One potential
difference is the subject populations used to train vs. test the
adversary.

To investigate the adversary’s strategy, we again simulated it,
but now against the human-trained learner model (Fig. 3B). The
adversary appears to seek to prevent subjects from experienc-
ing the learner rewards assigned to the nontarget action, but to

Dezfouli et al. PNAS | November 17, 2020 | vol. 117 | no. 46 | 29223

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 8
7.

17
4.

95
.2

9
on

 J
an

ua
ry

 2
1,

 2
02

5
fr

om
 I

P
ad

dr
es

s
87

.1
74

.9
5.

29
.

A

B

Fig. 3. Simulations of the adversarial interactions over 100 trials in the bandit task. Blue and red circles indicate the selection of the target and nontarget
actions, respectively. Vertical blue and red bars indicate the prospective assignment of learner rewards to target and nontarget actions, respectively. The
green area shows the probability the learner model accords to the target action. (A) Two simulations of the adversary against a Q-learning model. (B) Two
simulations of the adversary against the learner model trained using human behavior. Solid and dashed arrows refer to the trials mentioned in the main
text.

make them see the learner rewards assigned to the target action,
and therefore to select it. To achieve this, learner rewards are
assigned to the target actions when this action is likely to get
selected in the next trial, but for the nontarget action, learner
rewards are assigned when this action is unlikely to get selected.

Some of the tactics the adversary employs are evident in these
simulations. In in Fig. 3B, Top the adversary starts by continu-
ously assigning learner rewards to the target action. Once the
subject was set on choosing the target action, learner rewards are
assigned to the nontarget action to “burn” them without subjects
noticing. A second tactic is using partial reinforcement after the
initial serial learner reward delivery on the target action (shown
by the dashed horizontal line above the panel). This saves tar-
get learner rewards for later while not materially affecting choice
probabilities. A third tactic is applied when the learner model
takes a nontarget action, as shown by the vertical arrow on the
panel; here, the adversary briefly increases target learner reward
density to bring the subject back to choosing the target action.

The second simulation (Fig. 3B, Bottom) shows a more com-
plex strategy which allows the adversary to burn the nontarget
rewards “discreetly” for a learner model that has a tendency to
alternate. In the period indicated by the horizontal dashed arrow,
when the learner model tries the nontarget action (the red cir-
cle) without getting reward, on the next trial it tends to take the
target action (blue circle). This pattern of behavior is detected
by the adversary and exploited by assigning a learner reward
to each nontarget action after each selection of the nontarget
action. This efficiently hides nontarget learner rewards from the
subjects. Altogether, such tactics substantially bias the subjects
toward the target action.

Across the two experiments, it is evident that the strategy used
against humans is quite different from the strategy used against
Q-learning. Indeed, if we apply the adversary adapted to the
humans to a Q-learning learner, the average bias is 55.2 and if
we apply the adversary developed for Q-learning to humans (on
a learner model trained using human data) the average bias is
58.1 (SI Appendix, Fig. S1). These differ markedly from the biases
reported when the adversaries play against their corresponding
learner models.

Go/No-Go Task. Our second experiment involved a go/no-go task
that was implemented in ref. 8. On each of 350 trials, subjects see
either a go stimulus (e.g., an orange circle) or a no-go stimulus
(e.g., a blue triangle). Go stimuli are common (90% of trials)
and subjects are required to press the space bar in response
to them. No-go stimuli are rare and require subjects to with-
hold responding. In the nonadversarial case, no-go stimuli are
uniformly distributed across trials. By contrast, the adversary
rearranges the no-go stimuli to encourage the largest number of
mistakes (i.e., pressing space bar to no-go stimuli, or withholding
responding to go stimuli), without changing the total number of
each stimulus type. Similar to the previous experiment, the con-
straint (exactly 90% of trials should be no-go) is enforced by fiat
at the task level.

There are two differences between this experiment and the
bandit experiments. First, the adversary determines observations
(go vs. no-go) rather than learner rewards. Second, we consid-
ered an open-loop adversary—that is, one that did not receive
the state information xn

t on trial t and indeed knew nothing
about how a particular subject responded.

29224 | www.pnas.org/cgi/doi/10.1073/pnas.2016921117 Dezfouli et al.

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 8
7.

17
4.

95
.2

9
on

 J
an

ua
ry

 2
1,

 2
02

5
fr

om
 I

P
ad

dr
es

s
87

.1
74

.9
5.

29
.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016921117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2016921117

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

A B C

D

Fig. 4. Adversarial strategy in the go/no-go task. (A) The number of errors made by the subjects when no-go trials are delivered at random (SBJ vs ADV)
and when no-go trials are delivered by the adversary (SBJ vs ADV). (B) The distribution of the go trials over the task period delivered by the adversary. (C)
Percentage of the correct responses by the subjects in go and no-go trials when the no-go trials are delivered at random. (D) A sample simulation. Red
triangles indicate no-go trials. The blue shapes indicate the probability of pressing the key assessed by the learner model. Error bars represent 1 SEM.

We started by training the learner model using the data gen-
erated in the random case (N = 770 subjects collected using
Amazon Mechanical Turk were included in the analysis). Next,
we trained the adversary using the learner model, but unlike the
previous experiment the adversary did not receive the state of the
learner model. The trained adversary was then used to collect
data from humans using Amazon Mechanical Turk (N = 139).
The results are shown in Fig. 4A. Subjects on average made 11.7
errors when playing against the adversary and 9.5 errors when
no-go trials are distributed randomly (Wilcoxon rank-sum test;
P < 0.001). Therefore, the adversary was successful in finding
a state distribution which induces extra errors. The number of
excess errors may seem modest, but the task is extremely austere,
and so any significant change is an achievement.

To elucidate the adversary’s strategy, Fig. 4B shows the ratio
of go trials allocated by the adversary across the task. The adver-
sary allocates more no-go trials toward the end of the task. This
may be since subjects (in the training data in which the no-go tri-
als were randomly distributed) were more likely to make errors
in the no-go condition later in the task (Fig. 4C). However, the
adversary faces a challenging problem, since assigning all of the
no-go condition in a short period at the end of the task will likely
have the opposite effect, since the subjects will have to stay alert
only in a short period, and therefore a trade-off between these
factors is required.

Fig. 4D shows an example simulation. Red triangles indicate
no-go trials and blue symbols indicate the probability of pressing
the key (space bar) according to the learner model. Consistent
with the data, the probability of making an error in the no-go
trials increases over trials; thus, the adversary spread the no-go
trials across the task with a bias toward the end of the task to
induce more errors.

Multiround Trust Task. In the third experiment we evaluated our
framework on the multiround trust task (MRTT). MRTT is
a social exchange task for two players, whose roles are called
“investor” and “trustee” (9, 12). The task involves 10 sequential

rounds. In each round the investor receives an initial endowment
of 20 monetary units. The investor can share a portion (or all)
of this endowment. The shared amount is tripled by the experi-
menter and sent to the trustee. Then, the trustee can send back
any portion of this amount to the investor, hereafter called repay-
ments. The total amount earned by each player in the task is the
sum of what they earned in each round.

In our framework humans play the role of the investor and
the adversary plays the role of the trustee. The actions of the
adversary correspond to the proportions that the investor sends
back to the trustee (discretized to five actions corresponding to
0, 25, 50, 75, and 100% repayments). The goal of the adver-
sary is to make repayment choices that persuade the investor to
make payments that meet adversarial objectives. We trained two
adversaries based on two different objectives: 1) a MAX objec-
tive, in which the aim of the adversary is to gain the most over
the 10 rounds, and 2) a FAIR objective, in which the aim of
the adversary is to balance the total earnings of the trustee and
investor over the whole task. Comparing the two objectives shows
the extent to which the adversary can adapt to the problem is
faces; the FAIR objective allows us to evaluate the framework on
motivating humans to make cooperative rather than competitive
adversarial choices.

Note that the pattern of play can be substantially influenced by
the number of remaining rounds (for instance, a MAX-trained
trustee has no incentive to repay anything on the last round;
the prospect of this noncooperation can make investors cau-
tious) (13). This induces dependencies across rounds, making the
task a sequential decision-making problem. This is a significant
difference from the bandit setting of the first experiment.

We first collected data on a random investor (RND condi-
tion, that is, the investor selects action uniformly at random)
using Amazon Mechanical Turk (n = 232). Fig. 5A shows the
effect of the repayment amount on the investment by the sub-
jects in the next round (marginalizing over the round number).
Subjects generally invested more if a higher portion had been
repaid to them in the previous trial. This implies that in the case

Dezfouli et al. PNAS | November 17, 2020 | vol. 117 | no. 46 | 29225

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 8
7.

17
4.

95
.2

9
on

 J
an

ua
ry

 2
1,

 2
02

5
fr

om
 I

P
ad

dr
es

s
87

.1
74

.9
5.

29
.

A C

B

D

Fig. 5. MRTT. (A) The investment in a round as a function of the propor-
tion of the investment repaid by the trustee in the previous round, for the
data collected in the random condition. (B) The total amount earned by the
trustee (adversary) and investor (subjects) and the absolute gap between
them in different conditions. “LRN” refers to the learner model. “SBJ” refers
to subjects. “RND” refers to the random investor. (C) The percentages of
investment and repayment in each round for MAX and FAIR adversaries. (D)
Percentage of repayment by the adversary by the adversary in each round
as a function of the percentage of investment.

of MAX objective the adversary should aim to increase future
investments by making high repayments and building trust, but it
also needs to share as little as possible to profit from the invest-
ments it receives. This is a nontrivial decision-making problem
for the adversary.

We used the data collected in the random condition to train
the learner model and used this learner model to train two

adversaries based on the above objectives. Each adversary was
tested on the data collected using Amazon Mechanical Turk
(n = 155 for FAIR adversary and n = 209 for MAX adver-
sary). Fig. 5B shows the performance of the adversaries tested
on subjects and also their performance in simulations using
the learner model. As the figure shows, the gains of the MAX
adversary are significantly higher than the RND investor and
FAIR adversaries (Wilcoxon signed-rank test, P < 0.001). On
the other hand, the absolute earning gap (i.e., the absolute dif-
ference between the earning of the trustee and the investor over
the whole task) is lower for the FAIR adversary than for both
RND and MAX adversaries (Wilcoxon signed-rank test, P <
0.001). Therefore, the adversaries were successful in guiding sub-
jects’ actions toward their objectives. The performance of the
adversaries tested on the subjects is slightly worse than the per-
formance on the simulations against the learner model, which
might partly be due to the differences in subjects’ pools used for
training the learner models and testing the adversaries.

Fig. 5C shows the percentage of repayments and investments
in each round. As expected, the FAIR adversary repays more
(Fig. 5C, Top), which makes the subjects increase their repay-
ments over the rounds (Fig. 5C, Bottom). The MAX adversary
repays less, and, again as expected, repays nothing in the last
round.

Fig. 5D shows the adversary strategy in more details and as
a function of the investments. The MAX adversary starts with
high repayments to gain the investors’ trust but then sharply
decreases the repayments to exploit their cooperativity. This pat-
tern depends on the investment amount: If the investment is very
low (20%), in the early trials the adversary tries to persuade the
subjects to increase their investment by making large repayments
(up to 75%). This strategy is different from the FAIR adversary:
In this case if the investment is around 50% (10 units), the adver-
sary returns around 30%, which makes each player earn 20 units.
With investments less than 5, no matter what action the adver-
sary takes there will be a gap between the earnings. As such,
similar to the MAX case the adversary aims to build trust by
making high payments in early rounds but later on the repay-
ments become proportional to the investments. Note that the
adversary is not making repayments to balance the gains at each
round independently, in which case its strategy should be same
in all of the rounds, but it is adjusting repayments to guide the
investors’ actions to high values so that the gains can be balanced
with appropriate repayments.

Discussion
We have provided a general framework for generating adver-
saries to elicit target behavior in a wide variety of human
decision-making processes. In three experiments, we showed
that the framework is effective in inducing target behaviors and
also interpretable using simulations. We also showed that the
framework can be used in settings that the target behavior is
nonadversarial, such as inducing fairness in two-player games.

Cognitive Biases. The strategies used by the adversaries are
driven by the choice characteristics embedded in the structure
and weights of the learner model. Such choice characteristics,
when exploited by the adversary, can lead to irrational and sub-
optimal actions by the learner model. In this respect, they can be
seen as distilled, implicit generalizations of the traditional cog-
nitive biases which underlie different sorts of deviations from
normative accounts of choice (14). Exploring the relationship
between adversarial strategies and traditional cognitive biases is
a direction for future research.

Batch RL. An alternative to the framework developed here is
using batch RL algorithms, which are able to learn from a pre-
collected dataset without interacting with the environment (15).

29226 | www.pnas.org/cgi/doi/10.1073/pnas.2016921117 Dezfouli et al.

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 8
7.

17
4.

95
.2

9
on

 J
an

ua
ry

 2
1,

 2
02

5
fr

om
 I

P
ad

dr
es

s
87

.1
74

.9
5.

29
.

https://www.pnas.org/cgi/doi/10.1073/pnas.2016921117

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

There would then be a parallel with the learning to reinforce-
ment learn (16) or RL2 (17) frameworks. One advantage of
the current approach over these methods is that the policy of
the adversary can be interpreted with respect to the behavior
of the learner model which has been used to train it.

Experiment Design. Although we considered one-step adversarial
scenarios, in principle the same framework can be used for multi-
step experimental design (see also ref. 18). Say, for example, that
an experimenter desires the subjects to exhibit a specific pattern
of behavior, but the experimental parameters (e.g., probabili-
ties, delays, etc.) that yield the pattern are unknown. Following
the framework here, the experimenter can train a learner model
and use that learner model to train an open-loop adversary
which determines the optimal set of parameters for obtaining the
desired behavior. The obtained parameters then can be tested to
see whether they make the subjects exhibit the desired behav-
ior; if they did not, the learner model can be retrained using the
new dataset and this process can be iterated until the desired
behavior is obtained. We conjecture that the procedure will often
converge.

One reason that the subjects might not exhibit the desired
behavior in early iterations of this procedure is that the method
depends on the generalization of the predictions of the learner
model from nonadversarial regimes to the adversarial regimes.
The violation of this assumption implies that the adversary
pushes the learner model in the parts of the state-space which
have not been visited in the nonadversarial training and there-
fore the approximations of the human behavior in those regions
will be poor. This covariate shift phenomenon is known as
“extrapolation error” in the batch reinforcement learning liter-
ature (19) and several solutions have been suggested (see also
ref. 20 for batch supervised learning), which can be applied to
the current framework. Here, we used RNNs with a relatively
small number of cells to avoid this issue, but the extension of the
framework to address extrapolation error can be an interesting
future step.

Materials and Methods
Training the Learner Model. The learner model was trained using the objec-
tive function L(Θ) =−

∑
n=1...N

∑
t=1...Tn logπn

t (an
t), in which Θ refers to

the free parameters of the model, N is the total number of subjects, and Tn is
the number of trials completed by subject n. Note that πt(at) depends on the
history of inputs, which are omitted for simplicity. Optimization was based
on the Adam optimizer (21). The learner model was implemented using
Tensorflow (22) and the gradients were calculated using automatic differ-
entiation. The RNN in the learner model was based on gated recurrent unit
architecture (23). The optimal number of training iterations (early stopping)
and the number of cells for each experiment were determined using 10-fold
cross-validation. The optimal number of iterations and cells were then used
to train a learner model using the whole dataset for each experiment. The
number of cells considered was 3, 5, 8, and 10 cells, as in previous work (4).
The optimal number of cells and training iterations for each experiment is
presented in SI Appendix, Table S1. Note in the case of MRTT experiment we
discretized the investments to five actions corresponding to ranges 0 . . . 4,
5 . . . 8, 9 . . . 12, 13 . . . 16, and 17 . . . 20.

Training the Adversary. The DQN algorithm was used for training the adver-
sary in the bandit experiments (11). The inputs to the closed-loop adversary
were the internal state of the learner model (xt), its policy vector (probabil-
ity of taking each action by the learner model), the trial number, and the
number of rewards so far assigned to each action. Note that the internal
state of the learner model embeds other elements such as policy vector, but
we also fed these elements explicitly to the adversary to speed up training.
The output of the adversary was the value of each of the four actions corre-
sponding to the combination of assigning reward/no-reward to each of the
choices available to the learner model.

The adversary neural network had three fully connected layers with
128, 128, and 4 units, with ReLU, ReLU, and linear activation functions.
Replay buffer sizes of 200,000 and 400,000 were considered. The ε−greedy
method was used for exploration with ε∈{0.01, 0.1, 0.2}. Learning rates

{10−3, 10−4, 10−5} were considered for training the adversary using the
Adam optimizer. These performance of these 18 combinations was evalu-
ated after {1, 2, 3, 4, 5, 6, 7, 8, 9}× 105 training iterations. For the perfor-
mance evaluation, the adversary was simulated against the learner model
2,000 times and the average bias was calculated. The adversary with the
highest average bias was used. For the humans/Q-learning experiments, the
highest bias was achieved with buffer size 400,000/400,000, ε= 0.1/0.01,
and learning rate 0.0001/0.001

For the go/no-go experiment, since the task was longer (350 trials) we
used a policy-gradient method and advantage A2C algorithm (10) for train-
ing the open loop adversary. We also used an additional entropy term to
encourage sufficient exploration (24). The input to the adversary was the
current trial number and the total number of go/no-go states assigned. The
output of the adversary was the policy (i.e., the probability that the next
trial is go or no-go). Note that the policy is stochastic. The network did not
receive the learner model’s internal state as input since we sought an open-
loop adversary. Both the value and policy networks for the adversary had
three layers, with 256, 256, and 1 unit(s) in the value layer and 256, 256, and
2 units in the policy layer. The activation functions were ReLU, ReLU, and
linear, respectively, in each layer. We considered two values for the weight
of entropy {0.01, 0.5} and the adversary with 0.01 entropy weight achieved
a higher performance against the learner model (in terms of the average
number of errors made by the learner model in 1,500 simulation). The
adversaries were implemented in Tensorflow and trained using the Adam
optimization method (21).

For the MRTT experiment, we used DQN as for the bandit experiment.
The inputs to the adversary were the internal state of the learner model (xt),
its policy vector (probability of taking each action by the learner model), the
action taken by the investor (learner model), and the trial (round) number.
The output of the network was the action values of each of the five actions
corresponding to different proportions of repayments. In the case of the
MAX adversary, the reward delivered to the adversary in each round was the
amount earned (3× investment − repayment). In the case of FAIR adversary,
the reward in each round was zero except for the last round in which the
reward was the negative absolute difference between the gains of trustee
and investor over the whole task.

The adversaries were neural networks with three fully connected layers
with 128, 128, and 4 units, with ReLU, ReLU, and linear activation functions.
Replay buffer sizes of 200,000 and 400,000 were considered. The ε−greedy
method was used for exploration with ε∈{0.01, 0.1, 0.2}. Learning rates
{10−3, 10−4, 10−5} were considered for training the adversaries using the
Adam optimizer. The performance of the 18 combinations was evaluated
after {2, 5, 10}× 105 training iterations. For the performance evaluation,
the adversaries were simulated against the learner model for 15,000 times
and the average objectives were calculated.

Data Collection. The study was approved by the Commonwealth Scientific
and Industrial Research Organisation (CSIRO) ethics committee (Ethics Clear-
ance 102/19). Subjects agreed to an online consent form prior to each task
for their participation in the study. The data were collected using Amazon
Mechanical Turk. In all experiments, the participants received $0.4. In the
bandit task, they also could earn $0.01 for each smiley face. In MRTT subjects
received $0.01 for each monetary unit earned in the task.

For the bandit and MRTT tasks, during the data collection the adversaries
ran on a back-end Python server communicating with the task running in
the web browser by receiving the action information from the task and
sending the assigned rewards back to the test for the next trial. For the
go/no-go experiment, since the delay between the trials was short it was
not feasible to run the adversary on the back-end due to the communica-
tion lag. Instead, the adversary was exported to Javascript and ran in the
web browser using Tensorflow.js framework.

For the case of the go/no-go task, we selected subjects with performance
in the 75th percentile (which corresponded to less than 32 errors) and used
their data for training the learner model. We then collected the data in the
adversarial conditions and used the same threshold (fewer than 32 errors)
to select the subjects who were included in the analysis. In the bandit and
MRTT tasks, all of the subjects were included in the analysis.

Data Availability. Anonymized csv data have been deposited in GitHub
(https://github.com/adezfouli/decision adv).

ACKNOWLEDGMENTS. We are grateful to Yonatan Loewenstein for dis-
cussions. P.D. was funded by the Max Planck Society and the Humboldt
Foundation. This research was funded partially by CSIRO’s Machine Learning
and Artificial Intelligence Future Science Platform.

Dezfouli et al. PNAS | November 17, 2020 | vol. 117 | no. 46 | 29227

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 8
7.

17
4.

95
.2

9
on

 J
an

ua
ry

 2
1,

 2
02

5
fr

om
 I

P
ad

dr
es

s
87

.1
74

.9
5.

29
.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016921117/-/DCSupplemental
https://github.com/adezfouli/decision_adv

1. O. Dan, Y. Loewenstein, From choice architecture to choice engineering. Nat.
Commun. 10, 2808 (2019).

2. A. Dezfouli, R. W. Morris, F. Ramos, P. Dayan, B. W. Balleine, “Integrated accounts of
behavioral and neuroimaging data using flexible recurrent neural network models”
in Advances in Neural Processing Systems 31, S. Bengio et al., Eds. (Curran, Red Hook,
NY, 2018), pp. 4233–4242.

3. A. Dezfouli et al., “Disentangled behavioral representations” in Advances in Neural
Processing Systems 32, H. Wallach et al., Eds. (Curran, Red Hook, NY, 2019), pp. 2243–
2252.

4. A. Dezfouli, K. Griffiths, F. Ramos, P. Dayan, B. W. Balleine, Models that learn how
humans learn: The case of decision-making and its disorders. PLoS Comput. Biol. 15,
e1006903 (2019).

5. C. Szegedy et al., Intriguing properties of neural networks. arXiv:1312.6199 (21
December 2013).

6. Y. C. Lin et al., Tactics of adversarial attack on deep reinforcement learning agents.
arXiv:1703.06748 (8 March 2017).

7. K. S. Jun, L. Li, Y. Ma, J. Zhu, “Adversarial attacks on stochastic bandits” in Advances
in Neural Processing Systems 31, S. Bengio et al., Eds. (Curran, Red Hook, NY, 2018),
pp. 3644–3653.

8. I. W. Eisenberg et al., Uncovering the structure of self-regulation through data-driven
ontology discovery. Nat. Commun. 10, 2319 (2019).

9. B. King-Casas et al., Getting to know you: Reputation and trust in a two-person
economic exchange. Science 308, 78–83 (2005).

10. V. Mnih et al., “Asynchronous methods for deep reinforcement learning” in
Proceedings of the 33rd International Conference on Machine Learning, M. F.
Balcan, K. Q. Weinberger, Eds. (Curran, Red Hook, NY, 2016), Vol. 48, pp. 1928–
1937.

11. V. Mnih et al., Human-level control through deep reinforcement learning. Nature 518,
529–533 (2015).

12. K. A. McCabe, M. L. Rigdon, V. L. Smith, Positive reciprocity and intentions in trust
games. J. Econ. Behav. Organ. 52, 267–275 (2003).

13. A. Hula, P. R. Montague, P. Dayan, Monte Carlo planning method estimates planning
horizons during interactive social exchange. PLoS Comput. Biol. 11, e1004254 (2015).

14. A. Tversky, D. Kahneman, Judgment under uncertainty: Heuristics and biases. Science
185, 1124–1131 (1974).

15. S. Lange, T. Gabel, M. Riedmiller, “Batch reinforcement learning” in Reinforcement
Learning, M. Wiering, M. van Otterlo, Eds. (Adaptation, Learning, and Optimization
Series, Springer, 2012), Vol. 12, pp. 45–73.

16. J. X. Wang et al., Learning to reinforcement learn. arXiv:1611.05763 (17 November
2016).

17. Y. Duan et al., RL2: Fast reinforcement learning via slow reinforcement learning.
arXiv:1611.02779 (9 November 2016).

18. J. H. Bak, J. Y. Choi, A. Akrami, I. Witten, J. W. Pillow, “Adaptive optimal train-
ing of animal behavior” in Advances in Neural Processing Systems 29, D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, R. Garnett, Eds. (Curran, Red Hook, NY, 2016),
pp. 1947–1955.

19. S. Fujimoto, H. Van Hoof, D. Meger, “Addressing function approximation error
in actor-critic methods” in Proceedings of the 35th International Conference on
Machine Learning, J. Dy, A. Drause, Eds. (Curran, Red Hook, NY, 2018), Vol. 80, pp.
1582–1591.

20. Z. Cranko et al., “Monge blunts Bayes: Hardness results for adversarial training” in
Proceedings of the 36th International Conference on Machine Learning (Curran, Red
Hook, NY, 2019), Vol. 81, pp. 2523–2543.

21. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 (22
December 2014).

22. M. Abadi et al., TensorFlow: Large-Scale machine learning on heterogeneous systems.
arXiv:1603.04467 (14 March 2015).

23. K. Cho et al., Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv:1406.1078 (3 June 2014).

24. Z. Ahmed, N. Le Roux, M. Norouzi, D. Schuurmans, “Understanding the impact of
entropy on policy optimization” in Proceedings of the 36th International Conference
on Machine Learning (Curran, Red Hook, NY, 2019), Vol. 81, pp. 151–160.

29228 | www.pnas.org/cgi/doi/10.1073/pnas.2016921117 Dezfouli et al.

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 8
7.

17
4.

95
.2

9
on

 J
an

ua
ry

 2
1,

 2
02

5
fr

om
 I

P
ad

dr
es

s
87

.1
74

.9
5.

29
.

https://www.pnas.org/cgi/doi/10.1073/pnas.2016921117

